Large area and broadband ultra-black absorber using microstructured aluminum doped silicon films

نویسندگان

  • Zhen Liu
  • Hai Liu
  • Xiaoyi Wang
  • Haigui Yang
  • Jinsong Gao
چکیده

A large area and broadband ultra-black absorber based on microstructured aluminum (Al) doped silicon (Si) films prepared by a low-cost but very effective approach is presented. The average absorption of the absorber is greater than 99% within the wide range from 350 nm to 2000 nm, and its size reaches to 6 inches. We investigate the fabrication mechanism of the absorber and find that the Al atom doped in silicon improves the formation of the nanocone-like microstructures on the film surface, resulting in a significant decrease in the reflection of incident light. The absorption mechanism is further discussed by experiments and simulated calculations in detail. The results show that the doped Al atoms and Mie resonance formed in the microstructures contribute the broadband super-high absorption.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Light Absorber with an Ultra-Broad Flat Band Based on Multi-Sized Slow-Wave Hyperbolic Metamaterial Thin-Films

Here we realize a broadband absorber by using a hyperbolic metamaterial composed of alternating aluminum-alumina thin films based on superposition of multiple slow-wave modes. Our super absorber ensures broadband and polarization-insensitive light absorption over almost the entire solar spectrum, near-infrared and short-wavelength infrared regime (500–2500 nm) with a simulated absorption of ove...

متن کامل

Zeroth order Fabry-Perot resonance enabled ultra-thin perfect light absorber using percolation aluminum and silicon nanofilms

We demonstrated perfect light absorption in optical nanocavities made of ultra-thin percolation aluminum and silicon films deposited on an aluminum surface. The total layer thickness of the aluminum and silicon films is one order of magnitude less than perfect absorption wavelength in the visible spectral range. The ratio of silicon cavity layer thickness to perfect absorption wavelength decrea...

متن کامل

Engineering heavily doped silicon for broadband absorber in the terahertz regime.

Highly efficient absorber is of particular importance in terahertz regime as naturally occurring materials with frequency-selective absorption in this frequency band is difficult to find. Here we present the design and characterization of a broadband terahertz absorber based on heavily Boron-doped silicon (0.7676 Ω cm) grating. It is numerically demonstrated by utilizing both the zero- and firs...

متن کامل

Strong infrared absorber: surface-microstructured Au film replicated from black silicon.

With quasi-periodic microstructures, great enhancement of infrared light absorption of Au film over a broad wavelength band (2.7~15.1 μm) was realized experimentally for the first time. The microstructured Au film was prepared by replica molding of the surface of femtosecond (fs) laser microstructured silicon (black silicon). This unique absorption characteristic is mainly ascribed to good impe...

متن کامل

Ultra-broadband Tunable Resonant Light Trapping in a Two-dimensional Randomly Microstructured Plasmonic-photonic Absorber

Recently, techniques involving random patterns have made it possible to control the light trapping of microstructures over broad spectral and angular ranges, which provides a powerful approach for photon management in energy efficiency technologies. Here, we demonstrate a simple method to create a wideband near-unity light absorber by introducing a dense and random pattern of metal-capped monod...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017